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Exposure to Static and Extremely-Low Frequency Electromagnetic Fields and
Cellular Free Radicals
Henry Lai

Department of Bioengineering, University of Washington, Seattle, WA, USA

ABSTRACT
This paper summarizes studies on changes in cellular free radical activities from exposure to static and
extremely-low frequency (ELF) electromagnetic fields (EMF), particularly magnetic fields. Changes in free
radical activities, including levels of cellular reactive oxygen (ROS)/nitrogen (RNS) species and endogen-
ous antioxidant enzymes and compounds that maintain physiological free radical concentrations in
cells, is one of the most consistent effects of EMF exposure. These changes have been reported to affect
many physiological functions such as DNA damage; immune response; inflammatory response; cell
proliferation and differentiation; wound healing; neural electrical activities; and behavior. An important
consideration is the effects of EMF-induced changes in free radicals on cell proliferation and differentia-
tion. These cellular processes could affect cancer development and proper growth and development in
organisms. On the other hand, they could cause selective killing of cancer cells, for instance, via the
generation of the highly cytotoxic hydroxyl free radical by the Fenton Reaction. This provides
a possibility of using these electromagnetic fields as a non-invasive and low side-effect cancer therapy.
Static- and ELF-EMF probably play important roles in the evolution of living organisms. They are cues
used in many critical survival functions, such as foraging, migration, and reproduction. Living organisms
can detect and respond immediately to low environmental levels of these fields. Free radical processes
are involved in some of these mechanisms. At this time, there is no credible hypothesis or mechanism
that can adequately explain all the observed effects of static- and ELF-EMF on free radical processes. We
are actually at the impasse that there are more questions than answers.
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Introduction

This is a review of the research on the effects on cellular
free radicals after exposure to static- and extremely-low
frequency (ELF, 0–300 Hz) non-ionizing electromag-
netic field (EMF). In 1997, we first reported that mela-
tonin, a potent antioxidant, and the spin-trap compound
N-tert-butyl-alpha-phenylnitrone (that neutralizes free
radicals) blocked a 60-Hz magnetic field-induced DNA
strand break in cells of the rat brain (Lai and Singh
1997a, 1997b). Further experiment (Lai and Singh
2004) demonstrated similar inhibitory effects of Trolox
(a vitamin E-analog anti-oxidant) and 7-nitroindazole (a
nitric oxide synthase inhibitor). In addition, the effect
could also be blocked by the iron chelator deferiprone
suggesting the involvement of the iron-catalyzed Fenton
Reaction that produces the potent cytotoxic hydroxyl
free radical. These data indicated that the ELF magnetic
field affected free radicals in cells leading to cellular
molecular damages. There are now more than 200
papers published showing that static and ELF-EMF
affect cellular free radical processes. A list of the papers

is in the “supplementary material” included in the on-
line version of this paper. There are rather strong indi-
cations that exposure to static- and ELF-EMF affects
oxidative status in cells and animals. Many of the cellular
oxidative and anti-oxidative components have been
shown to be affected by the fields.

Effect on cellular free radical processes is probably
the most consistent biological effect of non-ionizing
electromagnetic fields (EMF). It has been reported in
many different animal and plant species after exposure
to EMF from static to radiofrequency (see Yakymenko
et al. (2016) and a 2017-update in the “oxidative effects
of ELF-EMF and radiofrequency radiation (RFR) sec-
tion” in the Bioinitiative Report (2012)).

Free radicals

Reactive free radicals (mainly, reactive oxygen species
(ROS) and reactive nitrogen species (RNS)) are pro-
duced as a result of cellular metabolism, particularly in
the mitochondria. Reactive oxygen species (ROS)
include mainly singlet oxygen, superoxide, peroxides,
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and hydroxy radical and reactive nitrogen species
(RNS) including mainly peroxtnitrite, nitrogen dioxide,
which are products of the reaction between nitric oxide
and superoxide. Nitric oxide is generated in cell by
nitric oxide synthases. Presence of free radicals in cells
can lead to macromolecular damages (in DNA, pro-
teins, and lipids), disturbance in cell functions, and cell
death. Damage in DNA is a cause of cancer. Under
normal conditions, free radical levels are kept in check
by various inducible antioxidant enzymes including
superoxide dismutase (SOD), catalase (CAT) and glu-
tathione peroxidase (GPx). In instances, when there is
an excessive increase in free radical production or
a deficit in anti-oxidant capacity, oxidative/nitrosative
stress results leading to cellular damage and functional
deficits. However, free radicals also serve important
cellular functions and are involved in cellular signaling
cascades that govern normal cell functions and in
immune defense against bacteria. They are also
involved in cellular chemistry that triggers apoptosis.
Thus, it is essential to keep free radicals at a critical
physiological homeostatic level. Any disturbance could
lead to detrimental biological consequences (cf. Pizzino
et al. 2017; Valko et al. 2007).

Cellular free radical processes is a complex physiolo-
gical mechanism. It involves feedbacks and compensatory
responses of different cellular components to maintain
homeostasis. EMF could disturb different components of
the process leading to a cascade of changes. Since expo-
sure to EMF leads to disturbance in free radical produc-
tion and excessive presence of free radicals in cells can be
considered as a stress, living organisms under chronic
EMF exposure probably go through the three phases of
the “general-adaptation-syndrome” of stress, i.e., alarm,
resistance, and exhaustion phases (Selye 1951). Thus, the
characteristic of the free-radical responses depends on
how long exposure has been occurring. In addition,
effects observed could depend on the cell type and
organ studied; time when the changes were studied, and
exposure conditions (such as intensity, cumulative dura-
tion of exposure, and characteristics of the field). Thus, it
is not surprising that the changes described in the “sup-
plementary material” show a complex pattern, i.e.,
changes are not always in the same direction. Research
on the effects of static- and ELF-EMF is mainly on ROS.
There are only few studies on RNS (~5%).

Effects of static and ELF EMF-induced changes
in cellular free radical processes

Several papers reported changes in biochemistry, phy-
siology, and general functions as a consequence of
changes in cellular oxidative status resulting from

exposure to static- and ELF-EMF. These include:
DNA damage (Giorgi et al. 2017; Jajte et al. 2001;
Koyama et al. 2008; Lai and Singh 1997a, 1997b; Lai
and Singh 2004; Yokus et al. 2005, 2008); immune
response (Akan et al., 2010; Kim et al. 2017); inflam-
matory response (Kim et al. 2017; Zhang et al. 2017);
apoptosis (De Nicola et al. 2006; Ding et al. 2004; Garip
and Akan 2010; Ghodbane et al. 2015; Koh et al. 2008;
Solek et al. 2017; Wartenberg et al. 2008; Yang and Ye
2015); protein misfolding and generation of prions
(Lian et al. 2018); cell proliferation and differentiation
(Ehnert et al. 2017; Hajipour Verdam et al., 2018; Lee
et al. 2010; Patruno et al. 2010; Song et al. 2018; Van
Huizen et al. 2019; Wolf et al. 2005); rhythmic slow
activity in hippocampal slices of the brain (Bawin et al.
1996); visual evoked potentials (Akpinar et al. 2012);
auditory event-related potentials (Akpinar et al., 2016);
visual and somatosensory evoked potentials (Akpınar
et al. 2016); heart rate (Ciejka and Goraca 2009);
wound healing (Glinka et al. 2013; Patruno et al.
2010, 2011); bone formation (Zhang et al. 2018); post-
stroke recovery (Cichoń et al. 2017a, 2017b, 2018);
hyperalgesia (Jeong et al. 2006); opioid-induced anti-
nociception (Kavaliers et al. 1998); spatial memory and
learning (Cui et al. 2012; Deng et al. 2013; Karimi et al.
2019); cognitive impairment (Duan et al. 2013); mis-
match-negativity response (Kantar-Gok et al., 2014);
depressive disorder (Ansari et al. 2016); anxiety-like
behavior (Djordjevic et al. 2017); and obsessive com-
pulsive disorder-like behavior (Salunke et al. 2014).
However, in most of these studies, the cause–effect
relationship was not well established. Do EMF-
induced changes in oxidative status cause these effects?
Or, are they effects of EMF caused by mechanisms
unrelated to oxidative changes? One powerful proof of
a free-radical effect is to establish whether an effect,
e.g., DNA damage, could be blocked by antioxidants or
pro-oxidants. An effect caused by a change in free
radicals should be able to be blocked by antioxidants
or pro-oxidants. There are several studies that
employed this strategy (see “Supplementary material”).

In most of the ELF-oxidative effects studies, the inten-
sities used were relatively high (i.e., more than 0.1 mT)
compared to ambient levels of static- and ELF-EMF (in
μT levels) in the human environment. However, effects at
high intensities could possibly occur in occupational
exposure situations where the levels are relatively high.
In addition, the exposure durations in most of these
studies are short-term (from hours to several days),
whereas environmental exposure is generally chronic.
Can most of the research results applicable to real-life
exposure situation? Do oxidative changes occur after
exposure to ambient levels of static- and ELF-EMF?
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There are studies that showed effects on free radical
processes at low static- or ELF-EMF intensities (at low
μT levels). They are listed in Table 1. Furthermore,
related to this is a paper by Kapri-Pardes et al. (2017)
showing effects on cellular signal cascades in eight cell
lines exposed to ELF-EMF at 0.15 μT at a similar level
that has been suspected to cause childhood leukemia.
Though the authors did not investigate the oxidative
status of their cells, they concluded that the effects were
mediated by NADP oxidase, an enzyme that can gen-
erate superoxide free radicals. In addition, similar to
the finding of Kesari et al. (2016), Maes et al. (2016)
also reported an increase in micronucleus formation in
SH-SY5Y human neuroblastoma cells after exposure to
a 50-Hz magnetic field at 10 μT, but without pretreat-
ment with menadione as in the Kesari et al. (2016)
study. Thus, disturbance of oxidative processes can
possibly occur at ambient levels of static- and ELF-
EMF (e.g., see ambient levels reported by Abuasbi
et al. 2018a, 2018b; Bürgi A et al., 2017; Gourzoulidis
et al. 2018; Ilonen et al. 2008; Lindgren et al. 2001;
Yitzhak et al. 2012).

Effects of electric fields

A few words have to be said on exposure to electric fields.
The exposure set-ups for the electric field are quite differ-
ent from those of magnetic fields. There are at least 16
electric-field exposure studies on free radical processes:
Akpinar et al. (2012, increase ROS in rat brain and retina;
2016, increased rat brain lipid peroxidation); Calota et al.
(2006, decreased human serum ROS); Fitzsimmons et al.
(2008, increased nitric oxide in human chondrocytes);
Gok et al. (2016, increased lipid peroxidation in mouse

brain and retina); Güler et al. (2008, increased lipid per-
oxidation in guinea pig liver); Güler et al. (2009a, no
significant effect on guinea pig plasma protein carboxyla-
tion; 2009b, increased protein carboxylation in guinea pig
lung); Harakawa et al. (2005, no significant effect on rat
plasma); Kantar-Gok et al. (2014, increased rat brain
protein carboxylation and lipid peroxidation); Luo et al.
(2019, decreased insect antioxidant enzyme); Miliša et al.
(2017, increased ROS in paramecium); Pakhomova et al.
(2012, increased ROS in Jurkat cells); Türközer et al.
(2008, no significant effect on guinea pig brain lipid
peoxidation); Wartenberg et al. (2008, increased oral
mucosa cancer cell SOD); and Wu et al. (2016, increased
mouse liver SOD). In most studies, 50-Hz electric field at
kV/m intensity (2–21.8 kV/m) and exposure time from
hours to days were investigated. Most studies reported
effects indicative of an increase in free radicals, e.g.,
increases in lipid peroxidation. Effects could occur at
a very low level of electric field exposure. A study by
Fitzsimmons et al. (2008) using a pulsed electric field at
0.00002 kV/m, reported an increase in nitric oxide after
30 min of exposure. Wartenberg et al. (2008) used a 0.004
kV/m DC-electric field and reported changes in activities
in the antioxidant enzyme SOD. This is actually quite
interesting. Since electric fields do not penetrate into
cells, do electric and magnetic fields act on different
mechanisms leading to changes in cellular free radical
processes?

Static- and ELF-EMF, free radicals, and cell
proliferation, viability, and differentiation

Free radicals can cause damages to cellular macromole-
cules (DNA, protein, and lipid). These damages can affect

Table 1. Free radical effects observed at low intensities of static and ELF-EMF.
Effect observed Exposure conditions

Bediz et al. (2006) Oxidative changes in rat blood and brain 50 Hz; 5 μT
Belova et al. (2010) Changes in ROS and activation of mouse peritoneal neutrophils Continuous-wave (31 Hz) and pulsed (15

Hz); 74.7 μT
Budziosz et al. (2018) Change in SOD activity in the rat brain 50 Hz; 4.4 pT
Calcabrini et al. (2017) Increased ROS in human keratinocytes 50 Hz; 50 μT
Ehnert et al. (2017) Changes in oxidative status and differentiation in human osteoblasts 16 Hz pulses; 6 − 282 μT
Fernie and Bird (2001) Increase in oxidative stress in male American kestrels 50 Hz; 30 μT
Hajnorouzi et al. (2011) Decreased SOD and Growth promotion of maize seedlings Static and 10 KHz; 22 μT
Karimi et al. (2019) Increases in total oxidant status and antioxidant activity and change in memory

retention in rats
50 Hz; 1–2000 μT

Kesari et al. (2016) Increase in superoxide in SH-SY5Y human neuroblastoma cells pretreated with
menadione

50 Hz; 10 μT

Mannerling et al. (2010) Increase in superoxide in k562 human leukemia cells 50 Hz; at or below 25 μT
Manikonda et al. (2014) Oxidative stress in rat brain 50 Hz; 50 μT
Martino and Castello (2011) Changes in proliferation and SOD in human umbilical vein endothelial cells Static; 30 μT
Naarala et al. (2017) Increase in superoxide in rat glioma C6 cells Static and 50 Hz; 30 μT
Poniedzialek et al. (2013) Change in ROS in human neutrophils EMF tuned to calcium ion cyclotron

frequency; 10 μT
Regoli et al. (2005) Decrease in CAT in snail digestive gland 50 Hz; 2.88 μT
Sharifian et al. (2009) Decreases in SOD and GPx in human serum and red blood cells 50 Hz; 8.8–84 μT
Van Huizen et al. (2019) Changes in ROS and regeneration in planarian Static; 100 μT
Zhang et al. (2018) Changes in nitric oxide activity in bone monocytes 50 Hz; 0.5 μT
Zmyslony et al. (2004) Decrease in ROS in rat lymphocytes stimulated by FeCl2 50 Hz; 40 μT
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cell functions. Mutation in DNA can lead to cancer devel-
opment. However, too much damage to a cell can cause
cell death. And death to precancerous and cancer cells
decreases the incidence of cancer. This may be a possible
non-invasive method for cancer prevention and treat-
ment. It is, of course, not known how much EMF expo-
sure is needed to push cancerous cell over the edge to
death. It may depend on the type of cancer cell.

On the other hand, the death of cells that cannot
reproduce and be replaced leads to dysfunction in
organs. This is particularly true for nerve cells. The
connection between EMF exposure and neurodegenera-
tive diseases are still not yet well established. There are
several recent studies indicating a possible correlation
with Alzheimer’s disease, amyotrophic lateral sclerosis,
dementia, and motor dysfunctions (Gunnarsson and
Bodin 2018; Huss et al. 2018; Jalilian et al. 2018;
Koeman et al. 2017; Pedersen et al. 2017). There are,
however, two interesting points that need to be pointed
out. First, static- and ELF-EMF have been shown to
reverse and improve cognitive performance in animal
models of neurodegenerative disorders (Akbarnejad
et al. 2018; Bobkova et al. 2018; Hu et al. 2016; Li et al.
2019; Liu et al. 2015; Sakhaie et al. 2017; Tasset et al.
2012). Can these be related to the effects of static- and
ELF-EMF on protein folding and prion production (Lian
et al., 2018) and induction of heat-shock proteins
(Laramee et al. 2014; Zeni et al. 2017)? Second, there is
an inverse correlation between cancer risk and
Alzheimer’s and Parkinson diseases (Poprac et al.
2017). An increase in cellular free radicals is
a common factor of these diseases. This supports the
notion that static- and ELF-EMF exposure can kill can-
cer cells and cause neurodegenerative diseases.

Harnessing cellular oxidative status using static and
ELF-EMF could also be beneficial in the treatment of
certain diseases. Several papers have suggested such pos-
sibilities including: improvement of immune responses
(Akan et al. 2010; Belova et al. 2010; Frahm et al. 2006;
Kim et al. 2017); treatment of osteoarthritis (De Mattei
et al. 2003); attenuation of ischemic brain injury (Duong
et al., 2016; Rauš Balind et al. 2014); increasing antiox-
idant properties in cells and tissues (Falone et al. 2016);
treatment of myopathies (Vignola et al. 2012); wound
healing and tissue regeneration (Glinka et al. 2013;
Patruno et al. 2010, 2011; Van Huizen et al. 2019);
cytoprotection (Osera et al. 2015, 2011); inducing differ-
entiation of stem cells (Haghighat et al. 2017b, 2017a;
Marycz et al. 2018; Park et al. 2013; Van Huizen et al.
2019); and protective effect on Huntington’s disease
(Tasset et al. 2012; Túnez et al. 2006). One interesting
prospect is the use of static and ELF-EMF in the treat-
ment of cancer. EMF can selectively kill cancer cells (Lai

and Singh 2010). Many years ago, we (Lai and Singh
2004) speculated that cancer cells are more vulnerable to
EMF than normal cells and that EMF kills cancer cells by
free radical formation. Since it is much easier to produce
ELF-EMF than RFR, and ELF-EMF gives a more uni-
form distribution and better tissue penetration that RFR,
it is more advantageous to use ELF-EMF for cancer
treatment. Let us look at the studies on static- and ELF-
EMF exposure on free radicals and cell proliferation,
differentiation, cell cycle, and cell death in cancer and
normal cells, summarized in Table 2. These are impor-
tant cellular processes that determine cancer develop-
ment and treatment, growth, development, wound
healing and regeneration in living organisms.

Several studies on cancer cells listed in Table 2 sug-
gested a possible beneficial effect on cancer treatment
under static- or ELF-EMF exposure by increasing apop-
tosis and decreasing proliferation and viability (Benassi
et al. 2016; Ding et al. 2004; Errico Provenzano et al.
2018; Hajipour Verdom et al. 2018; Koh et al. 2008; Lai
et al. 2016; Mannerling et al. 2010; Osara et al., 2011;
Wartenberg et al. 2008; Yang and Ye 2015). However,
others suggested a protective effect by decreasing apop-
tosis and increasing proliferation and viability that
would allow cancer to grow faster (De Nicola et al.
2006; Falone et al. 2007, 2017; Garip and Akan 2010;
Martinez et al., 2016; Osera et al. 2015; Song et al. 2018;
Wolf et al. 2005), whereas no significant effect on cell
viability and proliferation was reported by some studies
(Consales et al. 2019; Morabito et al. 2010; Naarala et al.
2017; Pakhomova et al. 2012; Sadeghipour et al. 2012).
Interestingly, A study (Ayşe et al. 2010) showed opposite
effects depending on the duration of exposure. This
reflects the discussion above on the dynamic of cellular
free radical processes and their ability to compensate.
Cell type probably plays a significant role. Cell-type-
specific responses to ELF-EMF have been reported by
Sullivan et al. (2011), Kesari et al. (2016), Koziorowska
et al. (2018), Makinistian et al. (2019), and Wang et al.
(2018). The conditions of exposure probably cause the
diversity of responses, but the conditions of exposure
described in the table do not reveal a clear pattern on
how different exposure parameters affect cellular free
radical processes and changes in cell proliferation, differ-
entiation, and apoptosis. There is a slight tendency of an
inverse relationship between free radical activity and
cellular proliferation, i.e., an increase in free radicals
causes a decrease in cell proliferation and vice versa.
Also, increase in free radical activity tends to enhance
apoptosis. This uncertainty is actually not surprising
because, in each study, we are looking at only some
components of the free radical processes and not the
whole pattern of changes. Feedback and compensatory
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mechanisms further complicate the picture. It is like the
predicament of the “blind men and the elephant”: “each
was partly in the right, and all were in the wrong!” Thus,
it is imperative to understand the conditions under
which static- and ELF-EMF could cause a consistent
increase/decrease in free radical activity in cells.

However, one must also keep in mind that free
radical is by no means the only mechanism by which
static- and ELF-EMF affect cell proliferation and viabi-
lity. Other mechanisms could be involved, e.g., activa-
tion of the ERK1/2 signaling pathway (Qiu et al. 2019);
and heat shock proteins (Zeni et al. 2017).

Magnetic field and the Fenton reaction

The iron-involved Fenton reaction may play a role in the
generation of free radicals after EMF exposure. In pre-
vious research, we (Lai and Singh 1997a) found that an
acute (2 hr) exposure to a 60-Hz magnetic field caused
DNA single and double strand breaks in brain cells of rats.
The effects were mediated by free radicals (Lai and Singh
1997b). Data also showed that the effects involved iron,
since they can be blocked by pre-treating rats before
magnetic-field exposure with the iron chelator deferri-
prone. More recently, we found that pulsed ELF-EMF
field could also kill human Molt-4 leukemia cells via an
iron-dependent free radical process (Lai et al. 2016).

Iron plays a vital role in cell growth, e.g., in energy
metabolism and DNA synthesis. For DNA synthesis,
riboses are converted into deoxyriboses, a component
of the DNA molecule, by the enzyme ribonucleotide
reductase, of which iron is a cofactor. Immediately
before cell division, iron is taken up into cells. In verte-
brates, a cellular iron transport system involves a specific
interaction between the iron-binding protein transferrin
in the extracellular fluid and cell surface transferrin
receptors that results in a facilitated transport of iron
across the cell membrane via endocytosis (Trowbridge
et al. 1984). Due to their rapid rate of division, most
cancer cells have high rates of iron intake (Karin and
Mintz 1981) and express a much higher cell surface
concentration of transferrin receptors (May and
Cuatrecasas 1985) than normal cells. In general, the
aggressiveness of a tumor is positively correlated with
cell surface transferrin receptor concentration of its cells.
For example, breast cancer cells have 5–15 times more
transferrin receptors on their cell surface than normal
breast cells (Reizenstein 1991), and they take up more
iron than normal breast cells (Shterman et al. 1991). This
is basically true in many different types of cancer cells.

Since cellular responses to magnetic fields involve an
iron-dependent process, we hypothesize that cancer
cells are more responsible to magnetic fields than

normal cells. The more potent hydroxyl free radicals
are formed by the Fenton Reaction from hydrogen
peroxide produced mainly in the mitochondria and in
the cytoplasm by superoxide dismutase (SOD)
(Figure 1).

Indeed, there are studies indicating that cancer cells
are more responsive to EMF than normal cells (Crocetti
et al. 2013; Curley et al. 2014; Kamalipooya et al. 2017;
Lai and Singh 2010; Morotomi-Yano et al. 2014; Tofani
et al. 2001; Zimmerman et al. 2012). Various studies
demonstrated that iron chelators blocked the effect of
ELF-EMF on oxidative processes (Calcabrini et al. 2017;
Lai et al. 2016; Lai and Singh 2004). In addition, static-
and ELF-EMF have been shown to affect iron metabo-
lism and iron-related gene expressions in cells
(Consales et al. 2019; Dey et al. 2017; Fitak et al.
2017; Hajnorouzi et al. 2011; Lee et al. 2015;
Shokrollahi et al. 2018). One can speculate that mag-
netic field causes a type of cell death know as ferrop-
tosis, which can be blocked by iron chelators and lipid-
soluble antioxidants and is being explored as a mean
for cancer therapy (Shen et al. 2018; Wang et al. 2018b).

This mechanism provides a non-invasive mean of
using ELF-EMF to selectively kill cancer cells (thus less
side effects) by taking advantage of a fundamental
property of cancer cells, i.e., high uptake of iron and
increased the production of cytotoxic free radicals. This
also led to the development, by us, a group of antic-
ancer compounds that produce carbon-based free

Fe2+ + H2O2 Fe3+ + OH
.
+ OH

Fe3+ + H2O2 Fe2+ + HOO
.

+ H
+

EMF

Fe2+

mitochondria

H2O2 OH
.

Cellular damage

The Fenton Reaction

Figure 1. The Fenton Reaction and effect of EMF exposure that
enhances the conversion of hydrogen peroxide into hydroxyl
radical catalyzed by a transition metal such as iron. Ferrous iron
(Fe2+) is converted into ferric iron (Fe3+) in the formation of
hydroxyl radical (OH) from hydrogen peroxide (H2O2). Ferric
iron is converted back to the ferrous form by reacting with
hydrogen peroxide.
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radicals in the presence of iron (Lai et al. 2013). These
compounds have been shown to be very selective and
effective in killing many types of cancer cells. In addi-
tion, the concept of the Fenton Reaction also led to the
idea of using ELF-MF for treatment of malaria (Feagin
et al. 1999; Lai and Singh 2010).

The evolutionary aspects of static- and ELF-EMF
in nature and free radicals

For millions of years, living organisms evolved in the pre-
sence of environmental static geomagnetic field and natural
extremely low frequency electromagnetic fields, such as the
lightning-generated Schumann Resonance. It is not sur-
prising that these fields can play important roles in the
survival of living organisms, e.g., in food foraging, direc-
tional cues, and reproduction. Living organisms are very
sensitive and responsive to low levels of these EMFs. This
has been shown in many animal species and affect various
biological functions, e.g., exploratory behavior in rodents
(Malewski et al. 2018); body alignment of dogs (Hart et al.
2013a); magnetic alignment in carps (Hart et al. 2012);
landing direction of water birds (Hart et al. 2013b); orien-
tation of grazing and resting cattle and deer (Begall et al.
2008); and cardiovascular and brain activities in humans
(Pishchalnikov et al. 2019;Wang et al. 2019). Some animals
can differentiate north and south poles of a magnetic field
(known as polarity compass) (Begall et al. 2008; Hart et al.
2012, 2013b, 2013a; Malkemper et al. 2015). Another func-
tion-related reproduction is the “natal homing behavior”,
i.e., an animal returns to its birthplace to reproduce, in
some animal species. It is observed in sea turtle (Brothers
and Lohmann 2015); eel (Naisbett-Jones et al. 2017); and
salmon (Putman et al. 2014b). Apparently, newborns of
these animals are imprinted with the memory of the inten-
sity and inclination angle of the local geomagnetic field.
This information will later be used to locate their place of
birth. All these traits confer some survival competitiveness
to the organisms.

In order for an environmental entity to affect the
functions of an organism, the following criteria have to
be met. First, the organism should be able to detect the
entity. Second, the level of the entity should be similar
to those in the normal ambient environment. Third, the
organism must have response mechanisms tuned to
certain parameters of the entity to allow immediate
detection of the presence and changes of the entity.
Immediate detection and response to the entity are
essential for the survival of the organism.

For the detection of changes in static- and ELF-EMF in
the environment, several mechanisms have been evolved.
Some organisms evolved special organs (receptors) to
detect environmental EMF. For example, the platypus has

thousands of electric sensors on its bill skin. Using these
electroreceptors, in interaction with another type of sensor
the mechanoreceptor, the monotreme platypus can detect
an electric field of 20 μV/cm (Manger and Pettigrew 1996),
which is similar to that produced by the muscles of
a shrimp. The information is processed by the somatosen-
sory cortex of the platypus to fix the location of the prey.
This type of electroreception is common in all three species
of monotremes and short bill echidna. Electric fish
(Elasmobranch) emits EMF that covers a distance of sev-
eral centimeters (Montgomery and Bodznick 1999; von der
Emde 1999). Again, this allows the location of a potential
prey by comparing its electrical properties with the vicinity.
Their electroreceptors have been shown to detect a field of
5 nV/cm. These EMF sensing mechanisms are highly sen-
sitive and efficient.

Two other mechanisms have been proposed to account
for electroreception: magnetite involved in iron-oxidation
and radical pair production in certain cellular molecules.
In both cases, the generation of reactive oxidative species
is involved. The radical-pair reaction hypothesis and con-
version of the form of radicals (singlet-triplet interconver-
sion) in a group of flavoproteins known as cryptochromes
(Hore and Mouritsen 2016) in animal species have been
intensively studied. There are reports of the presence of
cryptochromes in plants, which may be responsible for
the effect of EMF on plant growth (Ahmad et al. 2007;
Mohammadi et al. 2018). A comprehensible description
of this topic is beyond the scope of this paper and the
expertise of this author. Readers are referred to several
papers on the topic: Barnes and Greenebaum (2015);
Binhi and Prato (2017); Galler et al. (2005); Dodson
et al. (2013); Hore (2019); Hore and Mouritsen (2016);
Kirschvink et al. (2001); Landler and Keays (2018);
Sheppard et al. (2017); and Sherrard et al. (2018).

Thus, the mechanisms described above, electro-recep-
tors, magnetites, and radical-pair, enable living organisms
to immediately detect the presence and changes in envir-
onmental electromagnetic fields of very low intensity. An
effect that could have dire consequences on species survi-
val is that man-made EMFs, with ubiquitous presence in
the recent environment, could disrupt the natural
responses to nature static- and ELF-EMF. Disruption of
directional senses in insects has been reported (Shepherd
et al. 2018). Polarity compass also can be disturbed by
man-made EMF (Burda etal. 2009; Malkemper et al.
2015; Putman et al. 2014a). A study by Engels et al.
(2014) showed that magnetic noise (at 2 KHz – 9 MHz,
i. e., within the range of AM radio transmission) could
disrupt magnetic compass orientation in migratory
European robins. The disruption can occur at a very low
noise level of 0.01 V/m (0.0000265 μW/cm2). Similar
effects of RFR interference on magnetoreception have
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also been reported in a night migratory songbird (Aher et
al. 2016) and European robin (Wiltschko et al. 2015).

Electro-hypersensitivity in humans (Baliatsas et al.
2012) also showed an instantaneous response to EMF
and at low intensities. One wonders whether the
underlying mechanisms of electro-hypersensitivity
are related to the processes described above. It may
be the remnant of a primordial evolutional response of
humans to static- and ELF-EMF in the environment.
Free radicals may play a role. There is a report of
increased oxidative stress in electro-hypersensitivity
self-reporting patients (Irigaray et al. 2018).

From the discussion above, it is apparent that static-
and ELF-EMF that can affect free radical processes at
very low intensities that in turn affect evolution and
species survival. In the electromagnetic spectrum, the
only other frequency range that biological responses
can occur at very low intensity is the light spectrum.
It has been shown that the human visual system is
sensitive to one photon (Hecht et al. 1942; Pugh
2018), i.e., the reaction of one photon with one rho-
dopsin molecule in the retina. Apparently, beneficial
selection outcomes in evolution have made the living
organism extremely sensitive to these fields.

Here, let us digress to an unrelated but equally impor-
tant topic: i.e., on the biological effects of radiofrequency
radiation (RFR), another segment of the EMF-spectrum
that is being intensively studied. Since the presence of RFR
in the ambient environment is new in the evolutionary
time scale, how are living organisms responsive to RFR?
No specific cellular detection and response-mechanisms,
other than heating, have been discovered. Biological
responses to RFR at very low intensities have been reported
(e.g., see Table 1 in Levitt and Lai (2010)). But, most of
those studies were on modulated fields. Is it possible that
the observed biological responses to RFR are actually
caused by its ELF-modulations, since almost all environ-
mental RFR sources are modulated (see discussion in sec-
tion 9 “Effects below 4W/kg: thermal versus nonthermal”
in Levitt and Lai (2010))? In the literature, biological effects
of ELF-EMF and RFR are found to be very similar (e.g.,
compare the neurological effects of RFR described in Lai
(2018) to those of ELF-EMF (see section on “neurological
effects of ELF-EMF” Bioinitiative Report (2012))). In that
sense, one can deduce that there is no other significant RFR
effect other than thermal effect. Effects of low-level non-
modulated continuous-wave (CW) RFR may be
a counterargument. However, it is difficult to produce non-
modulated RFR in the laboratory, or micro-thermal effect
can occur under CW-RFR exposure. There are only several
studies showing effects of very low-level CW-RFR (e.g.,
with specific absorption rate (SAR) ~10 mW/kg). Positive
results were reported by de Pomerai et al. (2003)

(aggregation of bovine serum albumin and changes in
protein conformation, 1 GHz CW, 15–20 mW/kg);
Marinelli et al. (2004) (cell self-defense responses, 900
MHz CW, 3.5 mW/kg); D’Inzeo et al. (1988) (acetylcho-
line-related ion channel, 10.75 GHz CW, 8 mW/kg);
Persson et al. (1997) (blood-brain barrier permeability,
915 MHz CW, 0.4 mW/kg); and Tattersall et al. 2001)
(hippocampal functions, 700 MHz CW, 1.6 mW/kg).
Somosy et al. (1991) (molecular and structural changes in
cells of mouse embryos, 2450 MHz) reported that modu-
lated radiation (effect observed at 2.4 mW/kg) is more
potent that CW radiation (effect observed at 240 mW/
kg). Navakitkia and Tomashevskaya (1994) (behavioral
and endocrine changes, 2450 MHz, 2.7 mW/kg with mod-
ulation), Schwartz et al. (1990) (calcium movement in
heart, 2450 MHz, 0.15 mW/kg with modulation) and
Wolke et al. (1996) (calcium concentration in heart muscle
cells, 900 MHz, 1 mW/kg with modulation) reported
effects with modulated radiation and not with CW radia-
tion. The SARs given were averaged SARs. There is a study
that showed DNA damage in human glial cells after expo-
sure to a 50 Hz-modulated 900-MHz RFR but not to CW
field. In that study, only an exposure power density of 26
μW/cm2 was provided. Other than the Persson et al. (1997)
study, all the other studies were carried out in vitro.
Interestingly, the Persson et al. (1997) paper reported that
CW- is more potent than modulated-915 MHz radiation
on increasing blood-brain barrier permeability. Certainly,
the RF-carrier could affect the distribution of energy in the
exposed subject. And, the pattern of energy distribution
can affect biological responses to EMF (Lai et al. 1984). The
concept of interaction of modulation with the RF-carrier is
not new. It was shown in an earlier study (Bawin et al.
1978) that 6- and 16-Hz amplitude-modulated 147-MHz
RFR (0.8 mW/cm2) increased calcium efflux from chick
cerebral tissues, whereas 6- and 16-Hz fields alone caused
a decrease in efflux. Lastly, I like to point out that there are
not enough research data to support the popular belief that
“modulated is more biologically potent that non-
modulated RFR.”More experiments using the same expo-
sure set-up with continuous-wave and modulated RFR of
the same frequency and with intensities that produce the
same averaged SAR are needed to reach such a conclusion.

Concluding remarks

(1) Change in cellular free radical activity is one of
the most consistent effects of static- and ELF-
EMF on living organisms.

(2) The mechanisms by which static- and ELF-
EMF affect cellular free radical processes is
not well understood. The “radical pair” hypoth-
esis is a likely candidate, particularly the
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involvement of cryptochromes. It allows
immediate detection and response to changes
in static- and ELF-EMF in the environment,
which likely play important roles in the evolu-
tion of living organisms.

(3) Oxidative responses to static- and ELF-EMF are
probably dependent on the characteristic of the
field and exposure (such as frequency, modula-
tion, and duration) and the exposed object (such
as cell type, and states of biological activities),

(4) However, chronic exposure that leads to the
excessive and persistent presence of free radi-
cals can cause oxidative stress and should be
avoided.

(5) Effects of static- and ELF-EMF on free radicals
probably have beneficial health effects particu-
larly relating to cell proliferation, differentia-
tion, cell death, and cell cycle. These are
effects that could influence cancer development
and treatment, growth and development,
regeneration, and healing.

(6) In future research, it is imperative to identify
the field parameters that can selectively cause
beneficial or detrimental health effects.
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